Close

Presentation

Pre-Silicon Photon Emission Modeling and Optical Side-Channel Simulation
DescriptionOptical side-channel analysis poses a significant threat to the security of integrated circuits (ICs) by enabling the disclosure of secret data, such as encryption keys. In our work, we present a multiphysics simulation framework of optical side-channel analysis from the layout database of a fabricated testchip. By leveraging accurate device models and electro-photonic physics, our framework models the photon emission behavior in ICs and enables the statistical correlation of emitted photon patterns with secret keys. In our proposed solution, we begin by analyzing the device's layout under test and simulating the channel current of NMOS devices under various stimuli. By generating photon images based on pre-characterized models, we overlay individual photon images on the connected polysilicon ground metal. Through lossless image processing, we extracted photon intensity patterns from collected photon emission heatmaps and then performed correlation-based photon emission analysis (CPEA) to disclose the security key byte by byte. Our framework enables IC designers to assess the risks associated with optical side-channel attacks and develop efficient countermeasures at the pre-silicon stage.
Event Type
Back-End Design
TimeWednesday, June 2611:42am - 12:00pm PDT
Location2008, 2nd Floor
Topics
Back-End Design
Design
Engineering Tracks